
Alternatives of the scheme:

Deviations from analytical solution for linear coupler, L=10 µm
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is valid.

However, CE reveals that these solutions are unstable.
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1. Introduction
Numerical techniques for simulation of nonlinear light propagation are of fundamental importance in the analysis and design of new functional devices. Considering coupled microring
structures, theoretical studies of their nonlinear properties are often based on a nonlinear variant of the transfer matrix method (TMM) [1,2,3]. However, the method requires a solution 
of a nonlinear matrix problem, which may not always quickly converge nor be unique, and provides results in the frequency domain only. The latter can limit the usefulness of the technique. 
For example, the TMM cannot describe dynamics of optical bistability, a phenomenon, which is expected to play an important role in data processing applications [4]. Coupled resonant 
structures may also exhibit further interesting effects, such as generation of optical pulses from continuous wave input (self-pulsing) [5], which cannot be simulated in the frequency 
domain at all. These constraints can be overcome by using the finite-difference time-domain (FD-TD) method. However, for an exact description of resonant structures it is necessary to 
use very high spatial resolutions, resulting in time-consuming calculation, and/or apply advanced algorithms with correction of the phase velocity error [6,5]. 

Recently, we presented a simple numerical technique that avoids some of the mentioned problems [7]. Under the slowly-varying envelope approximation, propagation of optical pulses in
coupled microring systems is described by a system of coupled partial differential equations. These equations are solved by an explicit finite-difference scheme based on upwind 
differencing. We will denote the technique as CE (coupled equations). 

Here, we present more detailed analysis of CE method. We study accuracy of various scheme alternatives and present stability criterions. Then the CE technique is used for a 
simulation of more complex structures, a Kerr-nonlinear optical channel dropping filters, which include 1 and 3 microrings. The structures exhibit optical bistability and self-pulsing and 
were chosen with the aim to demonstrate typical circumstances in which the CE method may be useful.
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2. CE method

4. Numerical example: Self-pulsing
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3. Accuracy and Stability
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3. Numerical example: All-optical switching

resonance
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